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Abstract. Phase separation in the strongly correlated Falicov–Kimball model in infinite dimensions is
examined. We show that the phase separation can occur for any values of the interaction constant J∗ when
the site energy ε0 of the localized electrons is equal to zero. Electron-poor regions always have homogeneous
state and electron-rich regions have chessboard state for J∗ ≥ 0.03, chessboard state or homogeneous state
in dependence upon temperature for 0 < J∗ < 0.03 and homogeneous state for J∗ = 0. For J∗ = 0 and
T = 0, phase separation (segregation) occurs at −1 < ε0 < 0. The obtained results are exact for the Bethe
lattice with infinite number of the nearest neighbours.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.)

1 Introduction

Phase separation, as a phenomenon, is one of the main fea-
tures of the strongly correlated electron systems. In par-
ticular, it is intensively investigated in the t − J model
and in double exchange systems.

It should be noted that the mentioned models are very
complicated from the mathematical point of view, and rig-
orous study of phase separation in these models has enor-
mous difficulties. As a result, we have a few contradictory
calculations which are not enough anchored for the phase
separation in these models (for the t−J model, especially).

However, there is a non-trivial model in the frame of
which phase separation can be examined exactly. Such a
model is the spinless Falicov—Kimball model [1] (for a
review of the exact results in this model see Ref. [2]) with
Hamiltonian

H = −µ
∑
i

d†idi + (ε0 − µ)
∑
i

f†i fi

+ U
∑
i

d†idif
†
i fi + t

∑
<i,j>

d†idj , (1)

where d†i (f
†
i ) is the creation operator of itinerant (local-

ized) electron on the site with number i, U is the intra-
atomic interaction and t is the transfer integral between
the nearest neighbours. The chemical potential µ con-
strains the total number of itinerant and localized elec-
trons. The quantity ε0 sets the site energy level of the
localized electrons in relation to the middle of the itiner-
ant electron band. It is the important parameter of the
model.
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In spite of its simplicity, the Falicov–Kimball model
has a series of non-trivial physical properties. First of all,
this model reveals instability of homogeneous phase to-
wards chessboard-like charge ordering at some finite tem-
perature Tc in a d-dimensional lattice with d ≥ 2 [3–5].
Moreover, it is found that the pure phases (homogeneous
and chessboard) are unstable in regard to phase separation
at some conditions, and the Falicov-Kimball system can
stay in a state with different phases coexisting in different
space regions [6–11].

Showing a rich variety of the physical properties, the
Falicov–Kimball model is attracted because of the possi-
bility to investigate the mentioned properties on the rigor-
ous basis. In particular, Brandt and Mielsch [12,13] have
solved exactly this model in infinite dimensions and have
created the temperature phase diagram which includes the
phase separation for one case of U = 2t [6], i.e. for the case
of intermediate interaction. Using the Brandt–Mielsch re-
sults, Freericks [8,9] have calculated the zero-temperature
phase diagram where one can see that the phase separa-
tion region is increased on the itinerant electron concen-
tration when the interaction energy U changes from zero
to infinity.

Recently, Freericks, Gruber and Macris [14] have con-
sidered the Falicov–Kimball model in the limit of the
infinite U and have shown that the system separates
(segregates) into itinerant electron-rich and itinerant
electron-poor space regions having the same phase state
— homogeneous state. They have shown also that a state
with segregation is energetically advantageous in contrast
with the pure homogeneous state.

In the present paper, we examine the phase separa-
tion for the strongly correlated Falicov–Kimball in infinite
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dimensions, i.e. for the case of U/t � 1 and d → ∞, on
the basis of Hamiltonian proposed in our recent work [15]:

H = H0 +Hint, (2)

H0 = −µ
∑
i

X++
i + (ε0 − µ)

∑
i

X−−i , (3)

Hint = t
∑
<ij>

X+0
i X0+

j − J
∑
<ij>

X++
i X−−j (4)

where J = t2/U and Xpq
i is the Hubbard X−operator

describing the transition of the lattice site with num-
ber i from |q〉-state to |p〉-state. In the strongly corre-
lated regime, the lattice site has only three states, i.e.
p, q = +,−, 0 where the |+〉-state is associated with the
state of itinerant electrons, the |−〉-state is associated with
the state of the localized electrons and the |0〉-state is the
state without electrons. Double occupancy of lattice site
is excluded. Hamiltonian (2) can be obtained from (1) by
the canonical transformation in the limit of U/t� 1.

In the case of ε0 = 0, the site energy level of the local-
ized electrons lies in the middle of the itinerant electron
band, and the model (2) presents a simplified t−J model
in which ↓-electrons can not move.

In reference [15], we have solved exactly the model (2)
in infinite dimensions and have obtained the system of the
equations describing both the homogeneous state and the
charge ordering (chessboard) state for the Bethe lattice
with z → ∞ (z is the number of nearest neighbours). In
Section 2, we present the results of our study of the phase
separation on the basis of the mentioned equations and
show that the strongly correlated Falicov–Kimball system
separates into electron-rich regions and electron-poor re-
gions with the corresponding phase state for any values of
J∗ = Jz = const., z →∞. The case of J∗ = 0 (U =∞) in
dependence upon the site energy ε0 is considered in detail.
Some concluding remarks will be given in last section.

2 Phase separation. Bethe lattice

Here, the phase separation in the model (1) is studied
with the help of the investigation of compressibility dn/dµ
where n is the total electron concentration. Negative com-
pressibility indicates instability of system towards phase
separation. Determination of the phase separation bound-
ary requires use of Maxwell construction.

The necessary equations for this purpose were obtained
in our previous paper [15]. For the Bethe lattice (z =∞)
with two sublattices A and B, these equations are exact
and have the form

n = w +
1
2
δwf(−ν) +

4(a2 − b2)2

W 2

× 2
π

π/2∫
0

dt sin2 t cos2 t

a2 cos2 t+ b2 sin2 t

(
f [E(t)] + f [−E(t)]

)
(5)

where

w =
1
2

(wA + wB) (6)

is the concentration of localized electrons and

δw = wA − wB (7)

is the order parameter of the chessboard phase. The con-
centrations of localized electrons wA and wB in the A-
and B-sublattices can be obtained with the help of the
following equation

wi = 〈X−−i 〉 =
1

expβ
[
Θi − 1

2J
∗δn+pi − J∗(n− 2w)− µr

]
+ 1

(8)

where

βΘi = −pi ln
(
1 + expβ(µr + ν)

)
+

1
π

π/2∫
0

dt
(

1 +
abpi

a2 cos2 t+ b2 sin2 t

)
×
{

ln
(
1 + expβ[µr +E(t)]

)
+ln

(
1 + expβ[µr −E(t)]

)}
,

(9)

1
2
δn+ =

1
2
δwf(−ν)− ν 4(a2 − b2)2

W 2

× 2
π

π/2∫
0

dt sin2 t cos2 t

a2 cos2 t+ b2 sin2 t

f [E(t)]− f [−E(t)]
E(t)

, (10)

E(t) =
√
a2 cos2 t+ b2 sin2 t+ ν2, (11)

a2 =
1
8
W 2
(

1− w +
√

(1− w)2 − (δw/2)2
)
, (12)

b2 =
1
8
W 2
(

1− w −
√

(1− w)2 − (δw/2)2
)
, (13)

ν =
1
2
J∗δw, µr = µ+ J∗w, (14)

pi =
{

+1, i ∈ A
−1, i ∈ B , (15)

β = 1/T , f(x) is the Fermi-Dirac function with the renor-
malized chemical potential µr and W is the bare band-
width of the Bethe lattice.

The quantities a2, b2 and ν2 define the energy param-
eters of two bands in the ordered phase. The energetical
boundaries of the bottom band are given by −

√
a2 + ν2

and −
√
b2 + ν2, and the top band lies between

√
b2 + ν2

and
√
a2 + ν2. These two bands are joined into one band

in the homogeneous state where δw = 0 and b = 0. The
halfwidth of this band is equal to a = W

√
1− w/2. It

should be marked that the widths of the considered bands
depend on w and δw in the chessboard phase and on w in
the homogeneous phase. When w is increased, the widths
of the correlation bands are decreased. This property is
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Fig. 1. Total electron concentration n as a function of chemical
potential µ for ε0 = 0 and different values of temperature T .

a feature of physics of the strongly correlated electron sys-
tems.

The equations (5, 6, 7) present the system of three
equations for determination of the concentration of local-
ized electrons w, the order parameter δw and the chemi-
cal potential µ for given temperature T , the total electron
concentration n and the site energy ε0. We have the equa-
tions for the homogeneous phase in the case of δw = 0.
Some properties of the mentioned phases for the Bethe
lattice with z →∞ were studied in reference [15].

It should be noted that these equations are written in
a more simple form in contrast with reference [15].

First of all, consider the case of ε0 = 0. The site energy
level lies in the middle of the conduction band in this
case. Figure 1 shows the chemical-potential dependence
of the total electron concentration for different values of
temperature T and for the case of J∗ = 0.3 and ε0 = 0
(all the energetical quantities are given in the units of
W/2). The maximum value of the transition temperature
Tc is equal to 0.15 in this case. (n−dependence of Tc for
different values of J∗ is shown in Fig. 12 of Ref. [15]).
Therefore, the µ−dependence of n at T = 0.16 is presented
in Figure 1 by smooth curve. The µ-dependence of n has
one break for T < 0.15. This break occurs at the some
critical value of the total electron concentration nc such
that δw = 0 at n ≤ nc and δw 6= 0 at n > nc. The value
of T marking a curve coincides with the value of Tc at
n = nc for this curve (see Fig. 12 in Ref. [15]).

We see from Figure 1 that there are curves with nega-
tive dn/dµ in corresponding total-concentration ranges at
low temperatures. The boundaries of this ranges for every
curve are determined by the values of n where dn/dµ =∞
or by the values of n where n−dependence of µ has the
local maximum and the local minimum (dµ/dn = 0).
Figure 2a shows that the (n, T ) phase region with the
negative compressibility is arranged within the chessboard
phase in the case of J∗ = 0.3, and the part of the boundary
of this region due to the local maximums coincides with
the boundary of instability of the homogeneous phase.

The negative compressibility indicates instability to-
wards phase separation and requires Maxwell construction
for determination of the boundary of the region where two
pure phases may be coexisted. The results of the Maxwell
constructions are shown in Figure 2 by solid curves for the
case of ε0 = 0 and different values of J∗. A point (n, T )
within a region restricted by solid curve corresponds to
a state of the system where two states (two phases) co-
exist. These two states are defined by the points of in-
tersection of a T = const.-line passing through the point
(n, T ) inside the phase separation region with the solid
curve. In particular, Figure 2a shows that we have two
coexisting phases (homogeneous and chessboard) for the
case of J∗ = 0.3. Phase points outside the solid curve cor-
respond to pure phases. The properties of the pure chess-
board phase are shown in Figure 3 where the total-electron
concentration dependence of the chessboard-order param-
eter δw for different values of temperature is given in the
case of J∗ = 0.3.

It is known that phase separation curve is the first
order-phase-transition curve (see, for example, curve 1 in
Fig. 3). Thus, the Λ-point in Figure 2a with the tem-
perature coordinate T ∗ is the point where two first-order
transition curves and one second-order-transition curve
are converged.

It should be noticed that the general behaviour of the
µ−dependence of n coincides with the behaviour of the
−dw/dε0. The poles of dn/dµ are the same as the poles of
−dw/dε0. In particular, for the case of J∗ = 0.3, the neg-
ative values of dn/dµ and −dw/dε0 are observed only at
such values of n and w which correspond to the chessboard
phase. In the homogeneous phase, the values of dn/dµ and
−dw/dε0 are positive at J∗ = 0.3. This is seen from the
f − f correlation function χ−−(q) (see Ref. [15]) taken at
q = 0. We have

χ−−(q = 0) =
w(1− w)
D(0)

(16)

where for the Bethe lattice with z →∞

D(0) = T + 2w(1− w)J∗V (0)

− 2w(1− w)
[
(W/4)2 + (1− w)(J∗)2

]
Π(0),

(17)

V (0) =
1
π

π∫
0

dtf(a cos t), (18)

Π(0) = − 1
π

π∫
0

dt sin2 tf ′(a cos t)

= −1
a

1
π

π∫
0

dt cos tf(a cos t) (19)

where f ′(x) is the derivative of f(x) with respect to x.
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Fig. 2. Temperature phase diagram of the strongly correlated Falicov-Kimball model at ε0 = 0 and different values of J∗. H, CH
and PS denote homogeneous phase, chessboard phase and phase separation. Dashed curve defines the boundary of instability
of homogeneous phase towards the chessboard phase, dotted curve defines region with the negative compressibility. The phase
separation region is defined by solid curve.
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temperature T .

The concentration w and the chemical potential µ in
the homogeneous phase are determined from the equations

n = w + (1− w)
2
π

1∫
−1

dx
√

1− x2f(ax), (20)

w =
(

expβ(εf − µr) + 1
)−1

(21)

where

εf = ε0 − J∗(n− 2w)

+ T
1
π

π∫
0

dt ln
(
1 + expβ(µr − a cos t)

)
(22)

is the renormalized site energy of the localized electrons.
The analysis of (16) with the help of equations (20, 21)

(ε0 = 0) shows that

χ−−(q = 0) = − dw
dε0

> 0

for J∗ ≥ J∗c1 ' 0.04 at such values of n which correspond
to the homogeneous phase. Phase region with the negative
compressibility oversteps phase curve of the chessboard
phase for J∗ < J∗c1 (see Fig. 2b), and we can have the
situation when electron-rich regions have different states
in dependence upon the temperature. This picture takes
place at 0 < J∗ < J∗c2 ' 0.03 (see Fig. 2c). The mentioned
regions have the chessboard state for the low tempera-
tures (T < T ∗), and these regions have the homogeneous
state with a corresponding value of n for T ∗ < T < Tm

where Tm is the extremum (maximum or, perhaps, min-
imum) temperature for phase separation. (We will see
subsequently that minimum temperature is also possible
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Fig. 4. Temperature phase diagram at J∗ = 0: (a) ε0 = −0.5, (b) ε0 = 0.007.

for J∗ = 0 and positive ε0.) The electron-poor regions al-
ways have the homogeneous state for 0 < T < Tm. The
M -point with the temperature coordinate Tm is the point
where two first-order-transition curves are converged. Sep-
aration (segregation) of the system into space regions with
the same homogeneous state disappears in this point.

The chessboard phase is lacking and the Λ-point is van-
ished in the case of J∗ = 0 (see Fig. 2d). The system can
be separated into the regions with rich electron concentra-
tion and poor electron concentration, and the phase state
of these regions is homogeneous. It should be noted that
the segregation region is narrowed when temperature is
decreased, and the concentration range of the segregation
is equal to zero at T = 0. This is caused by the existence
of the factor w(1−w) in the expression for D(0) and the
behaviour of w. The influence of this factor on the concen-
tration dependence of the transition temperature Tc and
the behaviour of w are discussed in reference [15]. In the
case of J∗ = 0 and T → 0, the value of w → 0 (w/T → 0)
at 0 ≤ n < 1 because the chemical potential lies below
the site energy level arranged in the middle of the con-
duction band (ε0 = 0). Correlations between the itinerant
electrons are absent and the segregation can not occur.
When the chemical potential coincides with the site en-
ergy level, the value of w discontinuously changes from
zero to 0.5. Here n = 1, and the n-range with the negative
compressibility go to zero at n = 1 when T → 0.

Temperature phase diagram is essentially changed for
non-zero ε0. Further, we study influence of the choice
of the site energy level on phase diagram in the case of
J∗ = 0.

The site energy level lies below the middle of the con-
duction band for negative ε0, and the concentration w is
equal to zero for T = 0 at 0 < n < nc1 where nc1 < 1.
The value of nc1 can be obtained for different values of ε0

from Figure 8 in reference [15]. For example, nc1 = 0.295
in the case of ε0 = −0.5 (see Fig. 4a). Thus, the concen-
tration range, where χ−−(0) < 0, is limited on the left
by the quantity nc1 and on the right by the quantity nc2,
nc1 < n < nc2. In the interval nc2 < n < 1, the concen-
tration w is equal to n because the chemical potential is
pinned to the renormalized site energy level (the pinning
of the chemical potential was discussed in Ref. [16]) and
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Fig. 5. Phase diagram at J∗ = 0 and T = 0. The solid curve
presents the separation boundary and the dotted curve deter-
mines the region with the negative compressibility.

it lies below the bottom of the conduction band which
is very narrow in force of the factor

√
1− w defining the

width of the conduction band in the homogeneous state.
χ−−(0) becomes the negative quantity when the chemical
potential intersects the bottom of the conduction band
(the quantity Π(0) in (17) acquires a non-zero value in
this case).

Figure 4b shows a case of positive value of ε0. The site
energy level lies above the middle of the conduction band
in this case. One can see that the segregation is suppressed
for positive values of ε0. It is absent at any temperatures
for ε0 > 0.0092.

Thus, when J∗ = 0 and T = 0, the separation of the
strongly correlated system into electron-rich regions and
electron-poor regions with the same homogeneous state
for these regions occurs at −1 < ε0 < 0. The (n, ε0)-phase
diagram of the considered system is shown in Figure 5
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for J∗ = 0 and T = 0. The space regions with different
electron concentrations coexist inside of the phase region
limited by solid curves. When ε0 → 0 and ε0 → −1, the
separation is suppressed. The critical quantities nc1 and
nc2 have the same value at ε0 = 0 and at ε0 = −1. nc1 =
nc2 = 1 when ε0 = 0 and nc1 = nc2 = 0 when ε0 = −1.

3 Concluding remarks

In the present paper, we studied phase separation in the
strongly correlated Falicov–Kimball model. The obtained
results are exact for the Bethe lattice with z → ∞. We
saw that the phase separation into electron-rich regions
and electron-poor regions can occur for any J∗ (ε0 = 0).
Electron-poor regions always have the homogeneous state
and electron-rich regions have the chessboard state for
J∗ ≥ J∗c2 ' 0.03, the chessboard state or the homogeneous
state in dependence upon temperature for 0 < J∗ < J∗c2

and the homogeneous state for J∗ = 0.
The charge ordered phase is lacking in the case of

J∗ = 0, and the system separates into electron-poor and
electron-rich regions with the same homogeneous state.
When T = 0, the segregation can occur at −1 < ε0 < 0
only.

It is interesting to study influence of the choice of the
site energy level on the phase separation in the case of
J∗ 6= 0. However, one can see from common considerations
that the Λ-point is shifted on the chessboard-transition
curve to the axis T = 0 for positive values of ε0 (T ∗ → 0)
and to the axis n = 1 for negative values of ε0 (T ∗ → Tc

taken at n = 1). The same conclusion can be indirectly
obtained from Figure 3 in reference [6]. Practical calcu-
lations must determine the critical values of ε0 at which
T ∗ = 0 (positive values of ε0) or T ∗ = Tc taken at n = 1
(negative values of ε0) for given J∗.

It is interesting also to study space shape of the men-
tioned regions. In the theory of the strongly correlated

systems, three possible type of shapes are discussed (for
double exchange systems see, for example, Ref. [17]):
stripes, spherical droplets and systems divided into two
parts with different phase states. In respect to the Falicov–
Kimball model one can say that realistic calculations of
the shape of separated regions depend on the object of
application of the model. These calculations are still ab-
sent.

I would like to thank Dr. J.K. Freericks for helpfull discussion
of the case of J∗ = 0.
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